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_________________________________________________________________________ 

 

Abstract 

 

Floods are increasing alarmingly worldwide. However natural disaster management is a typical issue with 

imprecision, uncertainty and partial truth. But the traditional probability statistical method ignores fuzziness 

with incomplete data sets and requires a large sample size of data. To improve the probability estimation, the 

fuzzy set methodology is introduced into the area of disaster risk analysis. In order to test the grade criterions of 

flood disaster loss and resolve the non-uniformity problem of evaluation results of disaster loss indexes, and to 

raise the grade resolution of flood disaster loss, a new method—variable fuzzy sets(VFS) is suggested for 

evaluating the grade model of flood disaster, where the disaster loss grade is continuous real number. The 

method can scientifically and reasonably determine the relative membership functions of disquisitive indexes at 

level interval that relating to flood, also it can fully use one’s experience and knowledge, qualitative and 

quantitative information of index system to obtain weights of indexes for operating comprehensive evaluation. 

The numerical example of floods in China has shown that the proposed method is feasible and effective, and it 

provides a new theory for flood loss evaluation with incomplete data sets.   Copyright © acascipub.com, all 

rights reserved.  
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1 Introduction 

 

Water as a special resource, which sustains all life, is the substance of sustainable development society. With 

the rapid development of economy and growth of population recently, the problem of flood、drought、water 

resources shortage and water environment deterioration becomes more and more acute. And in particular recent 

flooding disasters have shown the vulnerability of the so called developed and developing countries to such 

events. In China, flood disasters occur frequently, and about two-thirds of its area are facing the threat of 

different types and degrees of floods, they are the result of natural and unnatural reasons such as social, 

economic factors. As severe floods occurring frequently, flood risk management plays an important role in 

guiding the government take timely and correct decision for flood rescue and relief. 

It is well known that constructing disaster control engineering system is a synthesis of muti-dimensional 

factors, so its evaluation shall be operated from single factor to multi factors, which means that routine 

evaluation method often omit important information and can not obtain integrated risk evaluation for 

engineering system. Accordingly, under global view of system, the variable fuzzy sets(VFS) is presented to 

evaluate the synthetic loss of disaster control engineering system in the risk management. The method can 

scientifically and reasonably determine membership degrees and relative membership functions of disquisitive 

objectives (or indicators) at level interval that relating to the disaster, also it can fully use one’s experience and 

knowledge, qualitative and quantitative information of indicator system to obtain weights of objectives (or 

indicators) for operating comprehensive evaluation of flood (Wang et al., 2011; Zhang et al., 2011).       

In this study we establish a new disaster loss assessment model based on variable fuzzy sets and it is then 

applied to the flood risk analysis in China successfully. In the second section we briefly describe some basic 

concepts and the principle of variable fuzzy sets. This is a new attempt at applying variable fuzzy sets in flood 

loss analysis. Computations based on this analytical flood loss assessment VFS-AHP model can yield an 

estimated flood damage value that is relatively accurate(Section 3). An example is carried out and indicates that 

the aforementioned model exhibits fairly stable analytical results, even when using a small set of sample data. 

The results also indicate that the method is highly capable of extracting useful information and therefore 

improves system recognition accuracy. These are shown by an example in Section 4. Finally, some discussion 

and conclusions are presented in Section 5. 

 

2 Model Introduction 

 

The theory of variable fuzzy sets (VFS) was established by author Chen (Chen SY,1998). Comprehensive 

evaluation of variable fuzzy sets (VFS) can effectively solve influence of border fuzzy and monitor error of 

estimation standard to evaluation result. The method can scientifically and reasonably determine membership 

degrees and relative membership functions of disquisitive objectives (or indexes) at level interval that relating to 

flood, also it can fully use one’s experience and knowledge, qualitative and quantitative information of index 

system to obtain weights of objectives(or indexes) (Chen SY, 1998; Chen SY, 2002; Chen SY, 2005) for 

operating comprehensive evaluation of flood. 

In this study we propose a loss evaluation model based on variable fuzzy sets and it is then applied to the 

flood loss evaluation in China successfully. 

 

2.1 Variable Fuzzy Sets 

 

To define the concept, let us suppose that U is a fuzzy concept, A  express characteristic of attactability and 
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cA  states repellency. Hence, to any elements u ( u U ), )(uA and )(ucA
  are relative membership 

degree (RMD) function that express degrees of attractability and repellency respectively. We have 

)(uA + )(ucA
 =1.Here 0 )(uA  1, 0 )(ucA

  1. 

Let ( )D u = )(uA - )(ucA
 , Where ( )D u  is defined as relative difference degree of u to A . Mapping 

: ( ) [ 1,1]D u D u    is defined as relative difference function of u to A .Then ( ) 2 ( ) 1AD u u  ,or 

( ) [1 ( )] 2A u D u   . Let 

 0 ( , ) , ( ) ( ) ( ), [ 1,1]cA A
V u D u U D u u u D        

 ,0 ( ) 1A u u U D u      

 , 1 ( ) 0A u u U D u       

 0 , ( ) 0A u u U D u    

Here 
0V  is defined as variable fuzzy sets(VFS), A

, A
, and 

0A are defined as attracting sets, repelling 

sets and balance boundary or qualitative change boundary of VFS 
0V . 

 

2.2 Methods of Relative Difference Function 

 

We suppose that 
0X = [a, b] are attracting sets of VFS V on real axis, i.e. interval of ( ) ( )CA A

u u  , 

X   = [c, d] is a certain interval containing 
0X , i.e. 

0X  X  .(see Fig.1) 

According to definition of VFS we know that interval [c, a]and [b, d] are all repelling sets of VFS, i.e. interval 

of ( ) ( )cA A
u u  . Suppose that M is point value of D(u)=1 in attracting sets [a, b]. x  is a random value in 

interval X  , then if x  locates at left side of M , its difference function is  

( ) ( ) [ , ]

( ) ( ) [ , ]

x a
D x x a M

M a

x a
D x x c a

c a






  


   

 

                      (1) 

or 
( ) 0.5[1 ( ) ] [ , ]

( ) 0.5[1 ( ) ] [ , ]

x a
x x a M

M a

x a
x x c a

c a










   


   

 

                   (2) 

And if x  locates at right side of M, its difference function is 
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( ) ( ) [ , ]

( ) ( ) [ , ]

x b
D x x M b

M b

x b
D x x b d

d b






  


   

 

                      (3) 

 or 
( ) 0.5[1 ( ) ] [ , ]

( ) 0.5[1 ( ) ] [ , ]

x b
x x M b

M b

x b
x x b d

d b










   


   

 

                   (4) 

Where β is index bigger than 0, usually we take it as β=1, viz. (1) and (3) become linear functions which 

equal  Equations (2) and (4) . 

 

3. VFS-AHP process to evaluate the synthetical degree value 

Suppose the sample set is 
},,,{ 21 nxxx 

 and every sample with m indicators, so the sample indicator 

matrix is  

      

)(

21

22221

11211

ij

mnmm

n

n

x

xxx

xxx

xxx

X 































                     (5) 

where ijx
 is the ith indicator of sample j, and i=1,2,…m; j=1,2,…n. 

And each indicator can be evaluated by c levels, so the indicator criteria interval matrices of each level is:  















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]),([ ihih ba

 

where i=1,2,…m; h=1,2,…c. Level 1 is the superior leval, leval c is the inferior leval. For every 
],[ ihih ba

,we 

can determine its range of inteval 
],[ ihih dc

according the lower and upper limit of its adjacent intevals and the 

point M of each interval as follows: 


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Based on matrixes
[ , ]a bI ,

[ , ]c dI  and M, we judge that evaluating indicator x  locates at left side or right side 

of point M, and according these to select (2) or (4) for calculating difference function ( )h iju  of indicators to 

standards. Here h  is grade number; i  is indicators number; j  is the sample number. 

Thus we get the the relative degree of membership matrix of the indicator values of the sample to each level 

according Eq.(2) and Eq.(4) as follows. 

            ))(( hijj xU                              (6) 

And according to the Analytical Hierarchy Process (AHP), The two-level hierarchy that has been constructed 

to obtain the weights of the evaluation indicators and we obtain normalized weights of the evaluation indicators 

as w .  

To get synthetic degree value of each indicator, we use variable fuzzy recognition model presented by Wu et 

al.(Wu et al., 2006) as follows, 

1

1

1

[ (1 ( ) ]

( ) 1

[ ( ) ]

m p
p

i ij h

i
h j m

p

i ij h

i

w x

u x

w x













 
    

    
  
   

 




                 (7) 

H= (1, 2, 3, 4)* ( )h ju x                           (8) 

Here h is the degree number and h=1, 2, 3, 4, 
jx  represent sample j, 

ijx  is the i-th indicator value of sample j. 

So H is the synthetic degree value vector of every sample. 

 

4 An example of the method to the flood loss degree assessment 

 

According to the above model, we can calculated the flood risk estimation of various degree in China based 

on the historical data from 1950 to 2009 collected by the Ministry of Water Resources of the People’s Republic 

of China. (see Table 1) We select the set of 60 records as the large sample, and then 30 records are randomly 

chosen to form a small sample in order to compare the results of them by the method. Damage area, inundated 

area, dead population, and collapsed houses have been chosen as the disaster indicators in flood risk analysis. 

By frequency analysis the floods are classified into four levels: small, medium, large and extreme (see Table 2). 

 

Table 1: Values of flood indicators during 60 years 

 

year 
   disaster area 

 (thousand hectares) 

 inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed 

houses 

(ten thousand) 

195

0 
6559.00 4710.00 1982 130.50 

195 4173.00 1476.00 7819 31.80 

app:ds:frequency%20analysis
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year 
   disaster area 

 (thousand hectares) 

 inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed 

houses 

(ten thousand) 

1 

195

2 
2794.00 1547.00 4162 14.50 

195

3 
7187.00 3285.00 3308 322.00 

195

4 
16131.00 11305.00 42447 900.90 

195

5 
5247.00 3067.00 2718 49.20 

195

6 
14377.00 10905.00 10676 465.90 

195

7 
8083.00 6032.00 4415 371.20 

195

8 
4279.00 1441.00 3642 77.10 

195

9 
4813.00 1817.00 4540 42.10 

196

0 
10155.00 4975.00 6033 74.70 

196

1 
8910.00 5356.00 5074 146.30 

196

2 
9810.00 6318.00 4350 247.70 

196

3 
14071.00 10479.00 10441 

1435.3

0 

196

4 
14933.00 10038.00 4288 246.50 

196

5 
5587.00 2813.00 1906 95.60 

196

6 
2508.00 950.00 1901 26.80 

196

7 
2599.00 1407.00 1095 10.80 

196

8 
2670.00 1659.00 1159 63.00 

196

9 
5443.00 3265.00 4667 164.60 

197

0 
3129.00 1234.00 2444 25.20 

197 3989.00 1481.00 2323 30.20 
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year 
   disaster area 

 (thousand hectares) 

 inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed 

houses 

(ten thousand) 

1 

197

2 
4083.00 1259.00 1910 22.80 

197

3 
6235.00 2577.00 3413 72.30 

197

4 
6431.00 2737.00 1849 120.00 

197

5 
6817.00 3467.00 29653 754.30 

197

6 
4197.00 1329.00 1817 81.90 

197

7 
9095.00 4989.00 3163 50.60 

197

8 
2820.00 924.00 1796 28.00 

197

9 
6775.00 2870.00 3446 48.80 

198

0 
9146.00 5025.00 3705 138.30 

198

1 
8625.00 3973.00 5832 155.10 

198

2 
8361.00 4463.00 5323 341.50 

198

3 
12162.00 5747.00 7238 218.90 

198

4 
10632.00 5361.00 3941 112.10 

198

5 
14197.00 8949.00 3578 142.00 

198

6 
9155.00 5601.00 2761 150.90 

198

7 
8686.00 4104.00 3749 92.10 

198

8 
11949.00 6128.00 4094 91.00 

198

9 
11328.00 5917.00 3270 100.10 

199

0 
11804.00 5605.00 3589 96.60 

199 24596.00 14614.00 5113 497.90 
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year 
   disaster area 

 (thousand hectares) 

 inundated area 

(thousand hectares) 

Dead 

Population 

(persons) 

collapsed 

houses 

(ten thousand) 

1 

199

2 
9423.30 4464.00 3012 98.95 

199

3 
16387.30 8610.40 3499 148.91 

199

4 
18858.90 11489.50 5340 349.37 

199

5 
14366.70 8000.80 3852 245.58 

199

6 
20388.10 11823.30 5840 547.70 

199

7 
13134.80 6514.60 2799 101.06 

199

8 
22291.80 13785.00 4150 685.03 

199

9 
9605.20 5389.12 1896 160.50 

200

0 
9045.01 5396.03 1942 112.61 

200

1 
7137.78 4253.39 1605 63.49 

200

2 
12384.21 7439.01 1819 146.23 

200

3 
20365.70 12999.80 1551 245.42 

200

4 
7781.90 4017.10 1282 93.31 

200

5 
14967.48 8216.68 1660 153.29 

200

6 
10521.86 5592.42 2276 105.82 

200

7 
12548.92 5969.02 1230 102.97 

200

8 
8867.82 4537.58 633 44.70 

200

9 
8748.16 3795.79 538 55.59 
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Table 2: Flood disaster rating standard 

 

Disaster 

level 

Damage area 

(thousand 

hectares) 

Inundated area 

(thousand hectares) 

Dead population 

(persons) 

Collapsed 

houses 

(ten 

thousand) 

Recurrence 

interval 

(years) 

Grade 

number 

Small 

flood 

0~9045 0~4989 0~3446 0~112.1 <2 1 

Medium 

flood 

9045~14197 4989~8216.7 3446~5113 112.1~247.

7 

2~5 2 

Large 

flood 

14197~20388 8216.7~13000 5113~10676 247.7~754.

3 

5~20 3 

Extreme 

flood 

20388~80000 13000~50000 10676~100000 754.3~5000 >20 4 

 

The two-level hierarchy that has been constructed to obtain the weights of the evaluation indicator is 

presented. In the figure, the goal is ―the weights of the evaluation indicators‖. All evaluation indicators 

(attributes) are listed under the goal. These are damage area, inundated area, dead population, and collapsed 

houses. 

The pairwise comparison is made using a scale based on Saaty (Saaty, 1980) proposal , detailed in Table 3. To 

illustrate the kind of results obtained, Table 4 presents a pairwise comparison matrix drawn from the information 

provided from the expert for the evaluation of the importance of the factors. Then the consistency of the 

comparison matrix was tested and the relative weight of the elements was computed along with the consistency 

ratio as presented in Table 5. Since the consistency ratio (CR) is below 10%, then the judgments are considered 

consistent. 

 

Table 3: Scale preferences used in the pairwise comparison process 

 

Range Category Score 

Superior Absolutely superior 9 

 Very strongly superior 7 

 Strongly superior 5 

 Moderately superior 3 

Equal Equal 1 

Inferior Absolutely inferior 1/9 

 Very strongly inferior 1/7 

 Strongly inferior 1/5 

 Moderately inferior 1/3 

 

Table 4: Pairwise comparison of the alternatives with respect to flood disasters 

 

 damage area inundated area dead population collapsed houses 

damage area 1 1/3 1/7 1/5 

inundated area 3 1 3/7 3/5 
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dead population 7 7/3 1 7/5 

collapsed houses 5 5/3 5/7 1 

 

Table 5: Vector of weights of the alternatives with respect to flood disasters 

 

 Flood impact 

damage area 0.0625 

inundated area 0.1875 

dead population 0.4375 

collapsed houses 0.3125 

 

And according to the Analytical Hierarchy Process (AHP) we obtain normalized weights of the evaluation 

indicators as: w = [0.0625 0.1875 0.4375 0.3125] =
( )iw

. 

According to Table 2 and Chen (Chen, 1997), we set up values matrix of parameters for calculating difference 

function of  VFS：  

      





















]5000,3.754[]3.754,7.247[]7.247,1.112[]1.112,0[

]100000,10676[]10676,5113[]5113,3446[]3446,0[

]50000,13000[]13000,7.8216[]7.8216,4989[]4989,0[

]80000,20388[]20388,14197[]14197,9045[]9045,0[

],[ baI  





















]5000,7.247[]5000,1.112[]3.754,0[]7.247,0[

]100000,5113[]100000,3446[]10676,0[]5113,0[

]50000,7.8216[]50000,4989[]13000,0[]7.8216,0[

]80000,14197[]80000,9045[]20388,0[]14197,0[

],[ dcI  





















50005851570

100000882240020

500001140660640

8000018324107620

M  

Based on matrixes 
[ , ]a bI ,

[ , ]c dI  and M, we judge that evaluating indicator x locates at left side or right side 

of point M, and according these to select (1) or (2) for calculating difference function ( )h iju  of indicators to 

standards. Here h  is grade number and h = 1, 2, 3, 4; i  is indicators number and i = 1, 2,3,4; j  is the 

sample number and 1,2 32j  ,…60. 

For example, for sample 1 and its 4th indicator-collapsed houses, i.e. i = 4, its attracting matrix [a, b], interval 

matrix [c, d] and point values matrix M respectively are 

[a, b] = ([0, 112.1] [112.1, 247.7] [247.7, 754.3] [754.3, 5000]); 

[c, d] = ([0, 247.7] [0, 754.3] [112.1, 5000] [247.7, 5000]); 
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M = (0 157 585 5000); 

When i = 4, the value of collapsed houses of sample 1 is 41x = 130.50. First we calculate the relative 

membership degree (RMD) of 41x  to the first degree, because of c41 = 0, a41 = 0, b41 = 112.1, d41=247.7, M41 = 

0, we can see that indicator value (130.50) locates at right side of point b41 and belongs to interval [b41, d41], so 

we select equation 

41 41
41

41 41

( ) 0.5[1 ( ) ]A

x b
u

d b




 


  
in Eq. (4). 

Substituting β=1 and other relevant parameters into this equation then we obtain μA(u41) = 0.4322. 

Analogously, we get relative membership function μA(uih) of each single indicator under i = 1, 2, 3, 4 to degrees 

h = 1, 2, 3, 4 as: 
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           (9) 

                     

To get synthetic RMD of each indicator, we use variable fuzzy recognition model presented by Wu et al. (Wu 

et al., 2006)as follows, 
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                 (10) 

H= (1, 2, 3, 4)* ( )h ju x                           (11) 

Here h is the degree number and h=1, 2, 3, 4, 
jx  represent sample j, 

ijx  is the i-th indicator value of 

sample j. Firstly we may use variable fuzzy recognition model (10) to calculate synthetic relative membership 

degree of sample 1. With Formula (10) we obtain synthetic relative membership degree of each indicator for 

flood ( )h ju x , after normalizing them that we get normalized synthetic relative membership degree of each 

indicator ( )h ju x  . Here 
iw  is the above indicator weight; m is number of indicators and m=4; ( )ij hx  is 

the above difference function of indicator i of the sample j to degree h;   is rule parameter of model 

optimization,  =1 is least single method and  =2 is least square method; p is distance parameter, p =1 is 

hamming distance and p =2 is Euclidean distance.  

When taking rule parameter of model optimization  =2 and distance parameter p =2 and substituting 

relative data in (9) into model (10) we get synthetic relative membership degree ( )h ju x  . After normalized it 
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is ( )h ju x .Using Formula (11) we get disaster degree of sample 1 as H= 1.3571. In the same way, we can 

calculate the disaster degree values of all the 60 samples as shown in Table 6. 

 

Table 6：The disaster degree values during the 60 years in China 

 

Sample Degree value Degree Sample Degree value Degree 

1 1.3571 small 31 1.7174 medium 

2 2.2648 medium 32 2.2289 medium 

3 1.5536 medium 33 2.4889 medium 

4 1.7778 medium 34 2.5849 large 

5 3.3745 large 35 1.7503 medium 

6 1.2042 small 36 1.7886 medium 

7 3.2422 large 37 1.5728 medium 

8 2.232 medium 38 1.6082 medium 

9 1.4712 small 39 1.7737 medium 

10 1.6809 medium 40 1.5097 medium 

11 2.1472 medium 41 1.5923 medium 

12 2.138 medium 42 2.7934 large 

13 2.1344 medium 43 1.3841 small 

14 3.5177 extreme 44 1.7698 medium 

15 2.2334 medium 45 2.6973 large 

16 1.1893 small 46 2.0392 medium 

17 1.073 small 47 2.869 large 

18 1.0226 small 48 1.4536 small 

19 1.0632 small 49 2.4492 medium 

20 2.0048 medium 50 1.4828 small 

21 1.1223 small 51 1.305 small 

22 1.1168 small 52 1.1254 small 

23 1.0734 small 53 1.4897 small 

24 1.3432 small 54 1.6739 medium 

25 1.2588 small 55 1.1469 small 

26 3.6992 extreme 56 1.517 medium 

27 1.1365 small 57 1.3548 small 

28 1.3071 small 58 1.2681 small 

29 1.066 small 59 1.0558 small 

30 1.3058 small 60 1.0536 small 

 

Due to the standard of four grades(Chen SY, 2009), so we have : 

(a) If 1.0 ≤ H ≤ 1.5,then flood degree belongs to small. 

(b) If 1.5 < H ≤ 2.5,then it belongs to medium. 

(c) If 2.5 < H ≤ 3.5, then it belongs to large. 

(d) If 3.5 < H ≤ 4, then it belongs to extreme. 

Hence we judge that comprehensive flood loss evaluation (1.3571) belongs to small grade, the rest can be 
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obtained in the same way. The results are showed in Table 6. 

 

5 Conclusions 

 

Floods occur frequently in China and cause great property losses and casualties. In order to implement a 

compensation and disaster reduction plan, the losses caused by flood disasters are among critically important 

information to flood disaster managers. The purpose of this study is to establish a fuzzy model to evaluate flood 

risk. This paper puts forward a method based on variable fuzzy sets (VFS) for disaster loss assessment. And the 

results indicates that the methodology is effective and practical so that it has the potentiality to be used to 

forecast the flood risk in flood risk management. It is also hoped that by conducting such risk analysis lessons 

can be learned so that the impact of flood disasters can be mitigated in the future.  
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Figure 1 : Relationship between points X , M and internals [a, b], [c, d] 

 


